Evolutionary history of the TBP-domain superfamily
نویسندگان
چکیده
The TATA binding protein (TBP) is an essential transcription initiation factor in Archaea and Eucarya. Bacteria lack TBP, and instead use sigma factors for transcription initiation. TBP has a symmetric structure comprising two repeated TBP domains. Using sequence, structural and phylogenetic analyses, we examine the distribution and evolutionary history of the TBP domain, a member of the helix-grip fold family. Our analyses reveal a broader distribution than for TBP, with TBP-domains being present across all three domains of life. In contrast to TBP, all other characterized examples of the TBP domain are present as single copies, primarily within multidomain proteins. The presence of the TBP domain in the ubiquitous DNA glycosylases suggests that this fold traces back to the ancestor of all three domains of life. The TBP domain is also found in RNase HIII, and phylogenetic analyses show that RNase HIII has evolved from bacterial RNase HII via TBP-domain fusion. Finally, our comparative genomic screens confirm and extend earlier reports of proteins consisting of a single TBP domain among some Archaea. These monopartite TBP-domain proteins suggest that this domain is functional in its own right, and that the TBP domain could have first evolved as an independent protein, which was later recruited in different contexts.
منابع مشابه
Evolution of sequence repetition and gene duplications in the TATA-binding protein TBP (TFIID).
Analysis of TBP gene sequences from a variety of species for clustering of short sequence motifs and for over- and underrepresentation of short sequence motifs suggests involvement of slippage in the recent evolution of the TBP N-terminal domains in metazoans, Acanthamoeba and wheat. AGC, GCA and CAG are overrepresented in TBP genes of other species, suggesting that opa arrays were amplified fr...
متن کاملSnf2/Swi2-related ATPase Mot1 drives displacement of TATA-binding protein by gripping DNA.
Mot1 is a conserved Snf2/Swi2-related transcriptional regulator that uses ATP hydrolysis to displace TATA-binding protein (TBP) from DNA. Several models of the enzymatic mechanism have been proposed, including Mot1-catalyzed distortion of TBP structure, competition between Mot1 and DNA for the TBP DNA-binding surface, and ATP-driven translocation of Mot1 along DNA. Here, DNase I footprinting st...
متن کاملThe evolution of protein functions and networks: a family-centric approach.
The study of superfamilies of protein domains using a combination of structure, sequence and function data provides insights into deep evolutionary history. In the present paper, analyses of functional diversity within such superfamilies as defined in the CATH-Gene3D resource are described. These analyses focus on structure-function relationships in very large and diverse superfamilies, and on ...
متن کاملThe evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world.
Protein domains are compact evolutionary units of structure and function that usually combine in proteins to produce complex domain arrangements. In order to study their evolution, we reconstructed genome-based phylogenetic trees of architectures from a census of domain structure and organization conducted at protein fold and fold-superfamily levels in hundreds of fully sequenced genomes. These...
متن کاملSolution structure of the hypothetical protein TA0095 from Thermoplasma acidophilum: a novel superfamily with a two-layer sandwich architecture.
TA0095 is a 96-residue hypothetical protein from Thermoplasma acidophilum that exhibits no sequence similarity to any protein of known structure. Also, TA0095 is a member of the COG4004 orthologous group of unknown function found in Archaea bacteria. We determined its three-dimensional structure by NMR methods. The structure displays an alpha/beta two-layer sandwich architecture formed by three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2013